Loi de Student

La loi de Student est une loi de probabilité, faisant intervenir le quotient entre une variable suivant une loi normale centrée réduite et la racine carrée d'une variable distribuée suivant la loi du χ².



Catégories :

Loi de probabilité - Statistiques

Page(s) en rapport avec ce sujet :

  • Par définition, la loi de Student -Fischer à \nu d. o. f. est la loi d'une variable t définie par t=\frac{s}{u} quand u est une variable... (source : douillet)
Loi de Student
Densité de probabilité / Fonction de masse
Student densite best.JPG
Fonction de répartition
T distributionCDF.png

Paramètres k ≥ 1 degrés de liberté,
Support x \in ]-\infty; +\infty[\,
Densité de probabilité (fonction de masse) f_T(t)= \frac{1}{\sqrt{k\pi}}\frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{k}{2})}\frac{1}{(1+\frac{tˆ2}{k})ˆ{\frac{k+1}{2}}}
Fonction de répartition 1-γ = ƒ (tγk), voir tableau en fin d'article
Espérance si k = 1 : non définie

si k > 1 : 0

Médiane (centre) 0
Mode 0
Variance si k ≤ 2 : +\infty

si k > 2 : \frac{k}{k-2}

Asymétrie (statistique) 0 pour k > 3

La loi de Student est une loi de probabilité, faisant intervenir le quotient entre une variable suivant une loi normale centrée réduite et la racine carrée d'une variable distribuée suivant la loi du χ².

Soit Z une variable aléatoire de loi normale centrée et réduite et soit U une variable indépendante de Z et distribuée suivant la loi du χ² à k degrés de liberté. Par définition la variable

T = \frac{Z}{\sqrt{U/k}}

suit une loi de Student à k degrés de liberté.

La densité de notée est donnée par :

f_T(t)=\frac{1}{\sqrt{k\pi}}\frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{k}{2})}\frac{1}{(1+\frac{tˆ2}{k})ˆ{\frac{k+1}{2}}}, pour k ≥ 1.

où Γ est la fonction Gamma d'Euler.

La densité associée à la variable est symétrique, centrée sur 0, en forme de cloche.

Son espérance ne peut pas être définie pour k = 1, et est nulle pour k > 1.

Sa variance est illimitée pour k ≤ 2 et vaut \frac{k}{k-2} pour k > 2.

Histoire

Le calcul de la distribution de Student a été publié en 1908 par William Gosset lorsqu'il travaillait à la brasserie Guinness à Dublin. Il lui était interdit de publier sous son propre nom, c'est pour cette raison qu'il publia sous le pseudonyme de Student. Le test-t et de la théorie est devenue célèbre grâce aux travaux de Ronald Fisher, qui a qualifié cette distribution de «distribution de Student».

Comportement limite

Quand k est grand, la loi de Student peut être approchée par la loi normale centrée réduite. Une manière simple de le démontrer est d'utiliser le lemme de Scheffé.

Application : intervalle de confiance associé à l'espérance d'une variable de loi normale de variance inconnue

Ce chapitre présente une méthode pour déterminer l'intervalle de confiance de l'estimateur de l'espérance μ d'une loi normale dont la variance σ² est inconnue.

Théorème — L'intervalle de confiance de μ au seuil de confiance α est donné par :  \left[\,\overline{x} - t_{(1 - \alpha/2)}ˆ{n-1}{\frac{S}\sqrt{n}\,}, \overline{x} + t_{(1 - \alpha/2)}ˆ{n-1}{\frac{S}\sqrt{n}}\,\right] ,

avec

\overline{x} = \frac{1}{n} \Sigma_{i=1}ˆn x_i, l'estimateur de l'espérance.
Sˆ2 =  \frac{1}{n-1}\Sigma_{i=1}ˆn (x_i - \overline{x}) ˆ2, l'estimateur non-biaisé de la variance.
t_{\gamma}ˆ{k} le quantile d'ordre 1-γ de la loi de Student à k degrés de liberté (dont la définition exacte est donnée ci-dessus).

Distributions apparentées

Tableau des valeurs du quantile

Un tableau des valeurs du quantile selon γ et k est apporté ci-dessous.

ν 75% 80% 85% 90% 95% 97.5% 99% 99.5% 99.75% 99.9% 99.95%
1 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 127.3 318.3 636.6
2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 14.09 22.33 31.60
3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 7.453 10.21 12.92
4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781
10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587
11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
50 0.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496
60 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460
80 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416
100 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390
120 0.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
\infty 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

Remarque : la dernière ligne du tableau ci-dessus correspond aux grandes valeurs de k. C'est un cas limite pour lequel la loi de Student est équivalente à la loi normale centrée et réduite.



Recherche sur Amazon (livres) :



Ce texte est issu de l'encyclopédie Wikipedia. Vous pouvez consulter sa version originale dans cette encyclopédie à l'adresse http://fr.wikipedia.org/wiki/Loi_de_Student.
Voir la liste des contributeurs.
La version présentée ici à été extraite depuis cette source le 07/04/2010.
Ce texte est disponible sous les termes de la licence de documentation libre GNU (GFDL).
La liste des définitions proposées en tête de page est une sélection parmi les résultats obtenus à l'aide de la commande "define:" de Google.
Cette page fait partie du projet Wikibis.
Accueil Recherche Aller au contenuDébut page
ContactContact ImprimerImprimer liens d'évitement et raccourcis clavierAccessibilité
Aller au menu