Régression fallacieuse

La régression fallacieuse sert à désigner une situation dans laquelle l'utilisation de séries temporelles non stationnaires dans une régression linéaire fait apparaître des résultats erronés, trop optimistes, qui font croire à une relation...



Catégories :

Estimation (statistique) - Statistiques

Page(s) en rapport avec ce sujet :

  • Considérons le cas d'une régression fallacieuse en panel sans constante () α i = 0 de ... Dans les deux cas, i. e. cointégration ou régression fallacieuse, ... (source : cairn)

La régression fallacieuse sert à désigner une situation dans laquelle l'utilisation de séries temporelles non stationnaires dans une régression linéaire fait apparaître des résultats erronés, trop optimistes, qui font croire à une relation entre les variables tandis que ce n'est pas le cas.

Historique

Granger et Newbold [1] ont montré en 1974 que de nombreuses études statistiques de séries temporelles montraient des faux résultats, parce qu'elles ne prenaient pas en compte le problème de l'auto-corrélation des données. En effet, avec une forte auto-corrélation, l'indice R2 mais aussi les tests sur les cœfficients, ont tendance à être trop optimistes ainsi qu'à faire croire à une relation entre les variables qui n'est en fait que fallacieuse.

Explication

On souhaite faire une régression linéaire entre deux séries temporelles :  Y_t= aX_t + \epsilon_t \qquad avec εt un bruit blanc.

Si Ytet Xt sont deux variables intégrées d'ordre 1, la distribution classique de l'estimateur des cœfficients n'est plus selon une loi de Student, mais selon un mouvement brownien. Utiliser cependant la distribution de Student amène précisément à ces résultats trop bons.

En effet, dans le cas classique, la convergence de l'estimateur des moindres carrés est montrée à partir du fait que la matrice de variance-covariance de l'échantillon tend vers la matrice de variance-covariance de la population, d'où on tire que Ωâ = σε²· (X 'X) -1. Cependant, la variance d'une variable non-stationnaire intégrée d'ordre 1 n'est pas fixe, et par conséquent l'estimateur n'est pas convergent en probabilité, dû au fait que les résidus sont eux-mêmes intégrés d'ordre 1, comme Philips (1986) l'a montré. En conséquence, les tests de Student et de Fisher sont incorrects aussi.

Solution

Il existe plusieurs manières de contourner le problème. Si les variables sont intégrées d'ordre 1, la série de leurs différences sera stationnaire (par définition de l'ordre d'intégration). Il suffit alors de faire la régression sur les variables en différences pour que celle-ci devienne valide.

Il est sinon envisageable d'utiliser un modèle à retards distribués, soit un modèle qui intègre aussi les retards de la variable expliquée et de la variable explicative. (Hamilton, 1994, p 562)

Exemple

Une simulation avec le logiciel libre de statistiques R permet d'illustrer le phénomène :

Dans cet exemple où on régresse deux bruits blancs, la relation est rejetée : R2=0.0027, et la probabilité que y=0 est 24%.

On remarque ici par contre que la régression de marches aléatoires, qui sont des processus intégrés d'ordre 1, laisse penser à une relation significative : le cœfficient R2=0.304, et la probabilité que y vaille zéro est inférieure à 0.0000001%, ce qui laisserait croire qu'il y a une relation entre les variables. La statistique de Fisher, qui teste si en soi la régression a un sens, est aussi particulièrement fortement rejetée.

On remarque finalement que quand on régresse les différences des marches aléatoires, on n'a plus le problème d'une relation apparente : les statistiques de Fisher et de Student sont moins fortement rejetées, et en particulier le cœfficient R 2 vaut 0.00717, ce qui conduit à la conclusion qu'il n'y a pas de relation entre ces variables.

Références

  1. Granger, C. W. J., Newbold, P. (1974)  : "Spurious Regressions in Econometrics", Journal of Econometrics, 2, 111-120

Philips P. C. B, «Understanding Spurious Regression in econometrics», dans Journal of econometrics, vol.  33, 1986, p.  311-340 Hamilton (1994), Time Series Analysis, Princeton University Press

Voir aussi

séries temporelles

Recherche sur Amazon (livres) :



Ce texte est issu de l'encyclopédie Wikipedia. Vous pouvez consulter sa version originale dans cette encyclopédie à l'adresse http://fr.wikipedia.org/wiki/R%C3%A9gression_fallacieuse.
Voir la liste des contributeurs.
La version présentée ici à été extraite depuis cette source le 07/04/2010.
Ce texte est disponible sous les termes de la licence de documentation libre GNU (GFDL).
La liste des définitions proposées en tête de page est une sélection parmi les résultats obtenus à l'aide de la commande "define:" de Google.
Cette page fait partie du projet Wikibis.
Accueil Recherche Aller au contenuDébut page
ContactContact ImprimerImprimer liens d'évitement et raccourcis clavierAccessibilité
Aller au menu